Contrast-enhanced microwave imaging of breast tumors

نویسندگان

  • J D Shea
  • P Kosmas
  • S C Hagness
چکیده

The detection of early-stage tumors in the breast by microwave imaging is challenged by both the moderate endogenous dielectric contrast between healthy and malignant glandular tissues and the spatial resolution available from illumination at microwave frequencies. The high endogenous dielectric contrast between adipose and fibroglandular tissue structures increases the difficulty of tumor detection due to the high dynamic range of the contrast function to be imaged and the low level of signal scattered from a tumor relative to the clutter scattered by normal tissue structures. Microwave inverse scattering techniques, used to estimate the complete spatial profile of the dielectric properties within the breast, have the potential to reconstruct both normal and cancerous tissue structures. However, the ill-posedness of the associated inverse problem often limits the frequency of microwave illumination to the UHF band within which early-stage cancers have sub-wavelength dimensions. In this computational study, we examine the reconstruction of small, compact tumors in three-dimensional numerical breast phantoms by a multiple-frequency inverse scattering solution. Computer models are also employed to investigate the use of exogenous contrast agents for enhancing tumor detection. Simulated array measurements are acquired before and after the introduction of the assumed contrast effects for two specific agents currently under consideration for breast imaging: microbubbles and carbon nanotubes. Differential images of the applied contrast demonstrate the potential of the approach for detecting the preferential uptake of contrast agents by malignant tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors

Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...

متن کامل

A Novel Biocompatible Nanoprobe Based on Lipoproteins for Breast Cancer Cell Imaging

Objective(s): Contrast-enhanced magnetic resonance imaging (MRI) of breast cancer provides valuable data on the disease state of patients. Biocompatible nanoprobes are expected to play a pivotal role in medical diagnosis in the future owing to their prominent advantages. The present study aimed to introduce a novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging.<br...

متن کامل

FDG-avid portal vein tumor thrombosis from hepatocellular carcinoma in contrast-enhanced FDG PET/CT

Objective(s): In this study, we aimed to describe the characteristics of portal vein tumor thrombosis (PVTT), complicating hepatocellular carcinoma (HCC) in contrast-enhanced FDG PET/CT scan. Methods: In this retrospective study, 9 HCC patients with FDG-avid PVTT were diagnosed by contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT), which is a comb...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: an experimental study of the effects of microbubbles on simple thermoacoustic targets.

Microwave-induced thermoacoustic tomography (MI-TAT) is an imaging technique that exploits dielectric contrast at microwave frequencies while creating images with ultrasound resolution. We propose the use of microbubbles as a dielectric contrast agent for enhancing the sensitivity of MI-TAT for breast cancer detection. As an initial investigation of this concept, we experimentally studied the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010